Abstract

Background: The ability to successfully perform a biopsy on pulmonary lesions by means of bronchoscopy varies widely due to anatomic and technological limitations. One major limitation is the lack of the ability to utilize real-time guidance during tissue sampling in the periphery. A novel system has been developed that enables real-time visualization and sampling of peripheral lesions by displaying an ultrasound image of the lesion and needle simultaneously. Methods: We performed a multicenter, prospective pilot in patients with peripheral pulmonary lesions undergoing a clinically indicated bronchoscopy. The purpose of this study was to demonstrate the feasibility of visualizing, accessing, and obtaining specimens adequate for the cytology of lung lesions when using a novel hybrid real-time ultrasound-guided fine-needle aspiration system for peripheral pulmonary lesions. Results: Twenty-three patients underwent bronchoscopic sampling of a peripheral pulmonary lesion with the study device. Mean lesion size was 3.6 (range 1.7–5.7) cm. Targeted lesions were located in all lobes of the lung. All lesions were successfully visualized and sampled under real-time visualization with specimens adequate for cytological evaluation. The needle was visualized in all lesions throughout targeting and sampling. There were no incidents of pneumothorax or moderate-to-severe bleeding. Conclusion: In this feasibility study, we report the first-in-human use of a continuous real-time endobronchial ultrasound guidance system to sample peripheral pulmonary lesions. Future generations of this device may improve usability and further studies are needed to determine the true diagnostic capabilities of this novel technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.