Abstract

3557 Background: This is a first in human in-vivo biodistribution of ex-vivo labelled CAR T cells assessed in a cohort of patients. Cells were labelled with novel Cu-64 labelled superparamagnetic iron oxide nanoparticles (SPION) and infused IV into patients with solid tumors & tracked using clinical dual PET-MR. The study validates the clinical translation of CAR T cell in-vivo tracking in real time. Methods: Cu-64 radioisotope was bound to silica coated SPION using electrolysis plating with tin & palladium seeding. Cellular uptake of Cu-64 SPION was facilitated with a transfecting agent. Functional assays including 51Chromium release, cytometric bead array demonstrated that labelling process did not affect cytotoxicity & cytokine secretion (TNFα & IFN-g). T cells were transduced with retroviral vector constructs encoding for second-generation chimeric T-cell receptor specific for carbohydrate Lewis Y antigen. Modified T-cells were expanded ex-vivo & were labelled with Cu-64 (~300 MBq) prior to re-infusion (3 x108 labelled cells). Scanning is performed with Siemens 3T dual PET-MR scanner. Results: In this first in human in-vivo study (HREC/16/PMCC/30) a cohort of patients received ex-vivo labelled CAR T cells to determine how many labelled cells distribute to solid tumor sites within 3-5 days. Our results demonstrate that cells can be efficiently labelled (≤60%) with high cell viability (≥85%) at a sensitivity sufficient to detect labelled cells at tumor site for up to 5 days. An observed trend in SUVmean & SUVmax provided insight into efficacy & individual response to therapy. Early time points showed moderate uptake of labelled cells in lungs posterior basal segments without increased activity over next few days, suggesting a transient process. Mild, diffuse bone marrow & relatively intense uptake of labelled cells in liver & spleen suggests margination of cells to reticulo-endothelial system. Distinct PET signal at some of the tumor sites at 24 h suggests antigen specific localization & time taken to reach these sites. Excretion via hepatobiliary indicated reabsorption from GI tract & re-circulation of labelled cells. Minimal uptake in brain & heart supported safety profile of labeling agent. Conclusions: This is first in human in-vivo study to provide highly valuable visual and dynamic data in real time and provides insight into individual responses to therapy. CAR T cell functionality largely remain unchanged due to labeling process. The findings indicate that labelled cells traffic to tumor sites at later time points & remain persistent for extended period of time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call