Abstract
Cancer stem cells (CSCs) have been proposed to be responsible for tumor recurrence, distant metastasis and drug-resistance, in the vast majority of cancer patients. Therefore, there is an urgent need to identify new drugs that can target and eradicate CSCs. To identify new molecular targets that are unique to CSCs, we previously compared MCF7 2D-monolayers with 3D-mammospheres, which are enriched in CSCs. We observed that 25 mitochondrial-related proteins were >100-fold over-expressed in 3D-mammospheres. Here, we used these 25 proteins to derive short gene signatures to predict distant metastasis (in N=1,395 patients) and tumor recurrence (in N=3,082 patients), by employing a large collection of transcriptional profiling data from ER(+) breast cancer patients. This analysis resulted in a 4-gene signature for predicting distant metastasis, with a hazard ratio of 1.91-fold (P=2.2e-08). This provides clinical evidence to support a role for CSC mitochondria in metastatic dissemination. Next, we employed a panel of mitochondrial inhibitors, previously shown to target mitochondria and selectively inhibit 3D-mammosphere formation in MCF7 cells and cell migration in MDA-MB-231 cells. Remarkably, these five mitochondrial inhibitors had only minor effects or no effect on MDA-MB-231 tumor formation, but preferentially and selectively inhibited tumor cell metastasis, without causing significant toxicity. Mechanistically, all five mitochondrial inhibitors have been previously shown to induce ATP-depletion in cancer cells. Since 3 of these 5 inhibitors were designed to target the large mitochondrial ribosome, we next interrogated whether genes encoding the large mitochondrial ribosomal proteins (MRPL) also show prognostic value in the prediction of distant metastasis in both ER(+) and ER(-) breast cancer patients. Interestingly, gene signatures composed of 6 to 9 MRPL mRNA-transcripts were indeed sufficient to predict distant metastasis, tumor recurrence and Tamoxifen resistance. These gene signatures could be useful as companion diagnostics to assess which patients may benefit most from anti-mito-ribosome therapy. Overall, our studies provide the necessary proof-of-concept, and in vivo functional evidence, that mitochondrial inhibitors can successfully and selectively target the biological process of cancer cell metastasis. Ultimately, we envision that mitochondrial inhibitors could be employed to develop new treatment protocols, for clinically providing metastasis prophylaxis, to help prevent poor clinical outcomes in cancer patients.
Highlights
Today, breast cancer treatment requires a multidisciplinary approach, involving an extensive medical team consisting of specialized surgeons, medical oncologists, oncology nurses, as well as radiologists and radiology technicians, to perform anti-cancer therapy, which consists of tumor excision, chemo- or hormonalwww.aging-us.com therapy, as well as radiation therapy
In order to identify new molecular targets that are selectively up-regulated in cancer stem cells (CSCs), we previously carried out unbiased proteomics analysis on MCF7 cell 2Dmonolayers, as directly compared with MCF7 3Dmammospheres, which are known to be highly enriched in CSCs and progenitor cells [6]
Given the functional effects of the Mitoriboscin compounds on metastasis, we evaluated if the gene mRNA transcripts of the large mitochondrial ribosomal proteins (MRPL) show any prognostic value in ER(+) and ER(-)/basal breast cancer patients
Summary
Breast cancer treatment requires a multidisciplinary approach, involving an extensive medical team consisting of specialized surgeons, medical oncologists, oncology nurses, as well as radiologists and radiology technicians, to perform anti-cancer therapy, which consists of tumor excision, chemo- or hormonalwww.aging-us.com therapy, as well as radiation therapy. Local and distant metastases are thought to be caused by a small sub-population of cancer cells, known as cancer stem cells (CSCs) [1,2,3,4,5] These CSCs are unique, in the sense that they can regenerate tumors in immune-deficient mice, as xenografts, and they undergo anchorage-independent proliferation and the EMT, allowing them to disseminate throughout the body, thereby creating local and distant metastatic lesions, which are largely chemo- and radio-therapy resistant [1,2,3,4,5]. It remains largely unknown, what are the precise vulnerabilities of CSCs
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.