Abstract

Mafic dikes are generally emplaced in extensional tectonic settings and provide key information regarding deep mantle processes and sources. The Bangong-Nujiang suture zone was formed by the collision of the Qiangtang and Lhasa terranes and experienced intense magmatism during the Early Cretaceous. However, the deep mantle processes and mechanisms involved in this magmatic flare-up (ca. 115 Ma) in the collisional belt remain controversial because of the lack of evidence for coeval mafic magmatism. Here, we present detailed petrological, geochronological, geochemical, and Sr-Nd-Hf-O isotope data for the newly discovered hypersthene-bearing mafic dikes in the Baingoin area in the middle-eastern parts of the Bangong-Nujiang suture zone, central Tibet. Secondary ion mass spectroscopy (SIMS) zircon U-Pb dating showed that the mafic dikes were emplaced during 120−115 Ma. These mafic rocks are characterized by variable MgO contents (2.7−5.2 wt%) and Mg# values (38.5−52.8), slight enrichment in light rare earth elements (REEs; [La/Yb]N = 7.5−8.1), relatively flat heavy REE patterns ([Gd/Yb]N = 1.75−1.84), and negative Eu, Ta, Nb, and Ti anomalies. The dikes also have relatively low initial 87Sr/86Sr ratios (0.7060−0.7062) and negative εNd(t) (−2.2 to −1.6) and positive εHf(t) (+2.5 to +3.6) values, and variable zircon εHf(t) (−2.2 to +7.2) and slightly elevated zircon δ18O (5.6‰−7.0‰) values. These geochemical characteristics indicate that the mafic dikes were derived from an enriched lithospheric mantle source. However, compared with coeval magmatic rocks, the mafic dikes have relatively high εNd(t) and εHf(t) values, indicating that they contain a depleted mantle component. The mafic dikes contain clinopyroxene and orthopyroxene (i.e., hypersthene), indicative of derivation from a high-temperature magma source. Clinopyroxene-melt thermobarometry yielded a temperature range of 1167−1213 °C, further supporting the involvement of a high-temperature asthenospheric component. Therefore, we suggest that the parental magmas of the Nakoulai mafic dikes were probably generated by the interaction between the asthenospheric mantle and overlying metasomatized lithospheric mantle. Combined with data from nearby Cretaceous magmatic rocks and sedimentary rocks, we suggest that the mafic dikes were generated in a postcollisional setting caused by upwelling of asthenospheric mantle owing to slab breakoff beneath the Bangong-Nujiang suture zone. Slab breakoff played a key role in the crust-mantle interactions and the onset of the magmatic flare-up in the middle-eastern parts of the Bangong-Nujiang suture zone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call