Abstract

A sensitive and fast high-performance liquid chromatographic method coupled with ultraviolet detection is herein reported for the simultaneous determination of human plasma concentration of six antiepileptic drugs frequently used in clinical practice [phenobarbital (PB), primidone (PRM), phenytoin (PHT), carbamazepine (CBZ), lamotrigine (LTG), oxcarbazepine (OXC)] and some of their main metabolites, carbamazepine-10,11-epoxide (CBZ-E), 10,11-trans-dihydroxy-10,11-dihydrocarbamazepine (trans-diol) and licarbazepine (Lic). Sample preparation consisted of a deproteinization step with methanol followed by a solid-phase extraction procedure. Chromatographic separation was achieved in approximately 15 min on a reversed-phase C18 column using a mobile phase composed by water-methanol-acetonitrile-triethylamine (68.7:25:6:0.3, v/v/v/v; pH 6.5) pumped isocratically at 1.0 mL/min. The detector was set at 237 nm. Calibration curves were linear with regression coefficients greater than 0.992 over the concentration ranges 0.25-100 μg/mL for PB, 0.4-50 μg/mL for PRM, 0.5-50 μg/mL for PHT, 0.1-50 μg/mL for CBZ, LTG and CBZ-E, 0.1-25 μg/mL for OXC, 0.25-10 μg/mL for trans-diol and 0.15-80 μg/mL for Lic. Inter- and intra-day imprecision did not exceed 12.15% and inaccuracy was within ±14.91%. Absolute mean recoveries ranged from 78.49 to 101.04% and no interferences were observed at the retention times of the analytes and internal standard (ketoprofen). This bioanalytical method was successfully applied to real plasma samples from epileptic patients and it seems to be a suitable tool for routine therapeutic drug monitoring and also to support other clinical pharmacokinetic-based studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call