Abstract

Calcium phosphates are frequently used as bone substitute materials because of their similarity to the mineral phase of bone, absence of antigenicity, and excellent osteoconductivity. However, in most currently available mineral substitutes, resorption occurs slowly if at all. In contrast, calcium phosphate cements have shown rapid resorption and remodeling in animal studies. In two prospective studies, a novel amorphous calcium phosphate cement (Biobon) was implanted in human patients for the first time. After 2-12 months, ten biopsies were obtained from nine individuals during secondary surgical interventions, for example, for implant removal. In all specimens, partial replacement of the material by new bone was observed, while residues of the cement were still visible. Undecalcified sections revealed extensive bone formation in immediate contact to the cement without fibrous interface. Polynucleated cells and superficial lacunae were indicative of resorptive activity, but inflammatory tissue response was absent. The new bone displayed regular trabecular and osteonal patterns. The histologic findings are in accordance with the excellent biocompatibility observed in the clinical follow-up. Though still incomplete, the resorbability of this cement appears superior to sintered calcium phosphates in these biopsy specimens. Presumably this is due to its amorphous crystalline structure. Biobon merits further studies as a promising substance for bone defect reconstruction in non-stress-bearing areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.