Abstract
Abstract Applications of a new slag cement and spacer system have reduced the chance of gas channels forming in the cement column during cement hydration in deep, hot south Texas gas wells. These slag cements were formulated with water and conventional cement additives to prevent gas migration and to improve interfacial bonding to oil-wet surfaces. Oil-mud removal spacer fluids (OMRS) were also specially formulated to remove oily residues and improve water-wetting of the oil-wet surfaces. These OMRS can also be designed to develop compressive strength when cementing operations have been completed. Set slag cement provides a tight gas seal with shear-bond healing capacity, as demonstrated by recently developed HTHP shear-bond strength tests. The previously reported phenomenon of healing or regeneration of slag-mix bonds has been reproduced with slag cement. The rapid development of strength at the top of the long cement column and the improved bonding to oil-wet surfaces were the two major improvements provided by the slag cement. OMRS can clean oil-wet surfaces, and then set once the job has been completed. Laboratory tests and field evaluations based on cement bond logs and pressure tests indicated improved bonding and isolation of the gas zones. Field applications of slag cements and OMRS fluids have led to greater primary and plug cementing successes in south Texas gas wells, and well production economics have improved accordingly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.