Abstract

The present paper deals with the surface heat flux estimation with thermocouples (TC) and fiber Bragg grating (FBG) embedded in the plasma facing components (PFC) of the WEST tokamak. A 2D heat transfer model combined with the conjugate gradient method and the adjoint state is used to estimate the plasma heat flux deposited on the PFC. The plasma heat flux is characterized by the time evolution of its amplitude and spatial shape on the target (heat flux decay length λqt, power spreading in the private flux region St and the strike point location x0). As a first step, five ohmic pulses have been investigated with different magnetic configuration and divertor X-point height varying from 44 to 68 mm from the surface. Despite an outboard shift, the relative displacements of the outer strike point as well as the heat flux decay length derived from the TC/FBG systems are consistent with the magnetic equilibrium reconstruction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.