Abstract

Alternative, biologically-based approaches for pest management are sorely needed and one approach is to use genetically engineered insects. Herein we describe a series of integrated field, laboratory and modeling studies with the diamondback moth, Plutella xylostella, a serious global pest of crucifers. A “self-limiting” strain of Plutella xylostella (OX4319L), genetically engineered to allow the production of male-only cohorts of moths for field releases, was developed as a novel approach to protect crucifer crops. Wild-type females that mate with these self-limiting males will not produce viable female progeny. Our previous greenhouse studies demonstrated that releases of OX4319L males lead to suppression of the target pest population and dilution of insecticide-resistance genes. We report results of the first open-field release of a non-irradiated, genetically engineered self-limiting strain of an agricultural pest insect. In a series of mark-release-recapture field studies with co-releases of adult OX4319L males and wild-type counterparts, the dispersal, persistence and field survival of each strain were measured in a 2.83 ha cabbage field. In most cases, no differences were detected in these parameters. Overall, 97.8% of the wild-type males and 95.4% of the OX4319L males recaptured dispersed <35 m from the release point. The predicted persistence did not differ between strains regardless of release rate. With 95% confidence, 75% of OX4319L males released at a rate of 1,500 could be expected to live between 3.5 and 5.4 days and 95% of these males could be expected to be detected within 25.8–34.9 m from the release point. Moth strain had no effect on field survival but release rate did. Collectively, these results suggest similar field behavior of OX4319L males compared to its wild-type counterpart. Laboratory studies revealed no differences in mating competitiveness or intrinsic growth rates between the strains and small differences in longevity. Using results from these studies, mathematical models were developed that indicate release of OX4319L males should offer efficacious pest management of P. xylostella. Further field studies are recommended to demonstrate the potential for this self-limiting P. xylostella to provide pest suppression and resistance management benefits, as was previously demonstrated in greenhouse studies.

Highlights

  • Arthropod pests cause an estimated >$470 billion in lost agricultural crops worldwide (Culliney, 2014)

  • The results described below describe a series of studies evaluating the behaviors of the genetically modified self-limiting strain (OX4319L) compared to a wild-type counterpart

  • In which immigration of wild P. xylostella occurs more gradually over 3 weeks, the effective over-flooding rate was higher, with 25:1 achieving significant suppression. These studies describe the first open-field release of any selflimiting insect in North America, and the first open-field release of a self-limiting agricultural pest in the world. These results are significant because they provide empirical evidence of how far these transgenic moths traveled and persisted under the field conditions encountered during our trial

Read more

Summary

Introduction

Arthropod pests cause an estimated >$470 billion in lost agricultural crops worldwide (Culliney, 2014). The main tool for controlling such pests is the use of insecticides, the global annual market value of which is projected to reach $16.44 billion by 2019 (Statistica, 2019). Other tactics will increasingly play a role in pest management in the future. Already the use of genetically engineered, insect-resistant crops (i.e., Bt crops expressing insecticidal proteins from the bacterium Bacillus thuringiensis) over the last two decades has played a major role in reducing the use of traditional insecticides in cotton, maize and other crops (James, 2017). The efficacy of Bt crops is threatened by the emergence of insects resistant to the Bt proteins expressed in them (Tabashnik and Carrière, 2017)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call