Abstract

Polynomial systems arising from a Weil descent have many applications in cryptography, including the HFE cryptosystem and the elliptic curve discrete logarithm problem over small characteristic fields. Understanding the exact complexity of solving these systems is essential for the applications. A first step in that direction is to study the first fall degree of the systems. In this paper, we establish a rigorous general bound on the first fall degree of polynomial systems arising from a Weil descent. We also provide experimental data to study the tightness of our bound in general and its plausible consequences on the complexity of polynomial systems arising from a Weil descent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.