Abstract

Thermochemical redox processes are currently considered one of the most promising methods for thermal storage of solar energy. Among the different types of materials available for this purpose, metal oxides allow higher operation temperatures in CSP systems. This is in agreement with the new R&D trends that focus on increasing the temperature to augment the efficiency. Copper oxide was previously proposed as a valid metal oxide for thermochemical storage. However, no demonstrative experiments had been carried out so far under solar radiation. In this work, the suitability of copper oxide was proved in a solar furnace. The employed solar reactor was a rotary kiln device with direct radiation absorption on reactive particles, which is a configuration that guarantees higher operation temperatures than other types of solar reactors. Given results include the performance of the CuO reduction in the rotary kiln under argon atmosphere and the cyclability of the pair CuO/Cu2O in air.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call