Abstract

With the advent of many optofluidic and droplet microfluidic applications using laser-induced fluorescence (LIF), the need for a better understanding of the heating effect induced by pump laser excitation sources and good monitoring of temperature inside such confined microsystems started to emerge. We developed a broadband highly sensitive optofluidic detection system, which enabled us to show for the first time that Rhodamine-B dye molecules can exhibit standard photoluminescence as well as blue-shifted photoluminescence. We demonstrate that this phenomenon originates from the interaction between the pump laser beam and dye molecules when surrounded by the low thermal conductive fluorocarbon oil, generally used as a carrier medium in droplet microfluidics. We also show that when the temperature is increased, both Stokes and anti-Stokes fluorescence intensities remain practically constant until a temperature transition is reached, above which the fluorescence intensity starts to decrease linearly with a thermal sensitivity of about −0.4%/°C for Stokes emission or −0.2%/°C for anti-Stokes emission. For an excitation power of 3.5 mW, the temperature transition was found to be about 25 °C, whereas for a smaller excitation power (0.5 mW), the transition temperature was found to be about 36 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.