Abstract

Floral malformation is the most destructive disease in mangoes. To date, the etiology of this disease has not been resolved. There are indications that stress-stimulated ethylene production might be responsible for the disease. Putrescine mediates various physiological processes for normal functioning and cellular metabolism. Here, the effect of putrescine in concentration ranging from 10(-1) to 10(-3)M was evaluated on disease incidence during mango flowering seasons of 2012 and 2013. In a scanning electron microscopy (SEM) study, putrescine (10(-2)M)-treated malformed floral buds bloomed into opened flowers with separated sepals and/or petals like healthy, whereas the untreated (control) malformed buds remained deformed. Further, malformed flowers recovered upon putrescine treatment, displaying clearly bilobed anthers, enclosing a large number of normal pollen grains and functional ovary with broad stigmatic surface as compared to control. The present findings provide the first report to demonstrate the role of putrescine in reducing various adverse effects of stress ethylene via decelerating the higher pace of its biosynthesis. It stabilizes the normal morphology, development, and functions of malformed reproductive organs to facilitate successful pollination, fertilization, and, thereby, fruit set in mango flowers. However, putrescine-ethylene-mediated cell signaling network, involving various genes to trigger the response, which regulates a wide range of developmental and physiological processes leading to normal cell physiology, needs to be investigated further.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call