Abstract

The beta-delayed neutron emission probability, P-n, of very neutron-rich nuclei allows us to achieve a better understanding of the nuclear structure above the neutron separation energy, S-n. The emission of neutrons can become the dominant decay process in neutron-rich astrophysical phenomena such as the rapid neutron capture process (r-process). There are around 600 accessible isotopes for which beta-delayed one-neutron emission (beta 1n) is energetically allowed, but the branching ratio has only been determined for about one third of them. beta 1n decays have been experimentally measured up to the mass A similar to 1 5 0, plus a single measurement of Tl-210. Concerning two-neutron emitters (beta 2n), similar to 3 0 0 isotopes are accessible and only 24 have been measured so far up to the mass A = 100. In this contribution, we report recent experiments which allowed the measurement of beta 1n emitters for masses beyond A > 200 and N > 1 2 6 and identified the heaviest beta 2n emitter measured so far, Sb-136.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call