Abstract
Diamonds form from fluids or melts circulating at depth in the Earth's mantle. Analysis of these fluids is possible if they remain entrapped in the diamond during its growth, but this is rarely observed in gem-quality stones. We provide the first evidence that typical mineral inclusions in gem-quality diamonds from the Siberian and Kaapvaal cratons are surrounded by a thin film of hydrous silicic fluid of maximum thickness 1.5μm. The fluid contains Si2O(OH)6, Si(OH)4, and molecular H2O and was identified using confocal micro-Raman spectroscopy and synchrotron-based X-ray tomographic microscopy. As the solid mineral inclusions have both peridotitic and eclogitic affinities and occur in two cratonic regions, our results demonstrate the strong connection between water-rich fluids and the growth of gem-quality lithospheric diamonds. The presence of the fluid films should be taken into account for a proper evaluation of H2O contents in the mantle based on H2O contents in solid inclusions and for a robust assessment of diamond formation pressures based on the residual pressures of the inclusions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.