First Evaluation of a Transcutaneous Carbon Dioxide Monitoring Wristband Device during a Cardiopulmonary Exercise Test

Publication Date Jul 1, 2019


We introduce an innovative wristband wireless device based on a dual wavelength NDIR optical measurement and an optimized thermo-fluidic channel to improve the extraction of the carbon dioxide gas from the blood within the heated skin region. We describe a signal processing model combining an innovative linear quadratic model of the optical measurement and a fluidic model. The evaluation is achieved using a cardiopulmonary exercise test (CPET). We compare carbon dioxide tension measurement at the forearm level using our device, with an electrochemical measurement at the forearm level, and an optical measurement of the end-tidal exhaled breath. These curves demonstrate a significant reduction of the variability of carbon dioxide pressure measurement with respect to the pressure dynamic range during the test.


Forearm Level Cardiopulmonary Exercise Test Fluidic Model Optical Measurement Carbon Dioxide Electrochemical Measurement End-tidal Breath Measurement Of Breath Extraction Of Gas Variability Of Measurement

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Jan 23, 2023 to Jan 29, 2023

R DiscoveryJan 30, 2023
R DiscoveryArticles Included:  3

Climate change adaptation has shifted from a single-dimension to an integrative approach that aligns with vulnerability and resilience concepts. Adapt...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19


Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.