We introduce an innovative wristband wireless device based on a dual wavelength NDIR optical measurement and an optimized thermo-fluidic channel to improve the extraction of the carbon dioxide gas from the blood within the heated skin region. We describe a signal processing model combining an innovative linear quadratic model of the optical measurement and a fluidic model. The evaluation is achieved using a cardiopulmonary exercise test (CPET). We compare carbon dioxide tension measurement at the forearm level using our device, with an electrochemical measurement at the forearm level, and an optical measurement of the end-tidal exhaled breath. These curves demonstrate a significant reduction of the variability of carbon dioxide pressure measurement with respect to the pressure dynamic range during the test.

Full Text

Published Version
Open DOI Link

Get access to 250M+ research papers

Discover from 40M+ Open access, 3M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call