Abstract
Abstract In this paper we present charge-coupled device (CCD) images in the Johnson B and V and Kron—Cousins I passbands for the previously unstudied open cluster NGC 5288. The sample consists of 15 688 stars reaching down to V∼ 20.5. The cluster appears to have a relatively small but conspicuous nucleus and a low-density extended coronal region. Star counts carried out in 25 × 25 pixel2 boxes distributed throughout the whole observed field allowed us to estimate the angular core and corona radii as∼1.3 and 6.3 arcmin, respectively. Our analysis suggests that NGC 5288 is moderately young and probably more metal-rich than the Sun. Adopting the theoretical metal content Z= 0.040, which provides the best global fit, we derive an age of 130+40−30 Myr. Simultaneously, we have obtained colour excesses E(B-V) = 0.75 and E(V-I) = 0.95 and an apparent distance modulus V-MV= 14.00. The law of interstellar extinction in the cluster direction is found to be normal. NGC 5288 is located at 2.1 ± 0.3 kpc from the Sun beyond the Carina spiral feature and∼7.4 kpc from the Galactic Centre. The cluster metallicity seems to be compatible with the cluster position in the Galaxy, given the recognized radial abundance gradient in the disc. For the first time, in this paper we determine the basic parameters for the open cluster NGC 5381, situated in the same direction as NGC 5288. This determination was reached by using CCD VI data published almost a decade ago by Pietrzyński et al. (1997) for NGC 5381. The properties of some open clusters aligned along the line of sight of NGC 5288 are examined. The properties of clusters of similar ages to NGC 5288 are also looked into. Evidence is presented that these did not form mainly along the spiral arms but rather in the thin Galactic disc (Z∼±100 pc).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.