Abstract

Cosmic collisions on planets cause detectable optical flashes that range from terrestrial shooting stars to bright fireballs. On June 3, 2010 a bolide in Jupiter's atmosphere was simultaneously observed from the Earth by two amateur astronomers observing Jupiter in red and blue wavelengths. The bolide appeared as a flash of 2 s duration in video recording data of the planet. The analysis of the light curve of the observations results in an estimated energy of the impact of 0.9-4.0x10^{15} J which corresponds to a colliding body of 8-13 m diameter assuming a mean density of 2 g cm^{-3}. Images acquired a few days later by the Hubble Space Telescope and other large ground-based facilities did not show any signature of aerosol debris, temperature or chemical composition anomaly, confirming that the body was small and destroyed in Jupiter's upper atmosphere. Several collisions of this size may happen on Jupiter on a yearly basis. A systematic study of the impact rate and size of these bolides can enable an empirical determination of the flux of meteoroids in Jupiter with implications for the populations of small bodies in the outer Solar System and may allow a better quantification of the threat of impacting bodies to Earth. The serendipitous recording of this optical flash opens a new window in the observation of Jupiter with small telescopes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.