Abstract

The article describes the first find of authigenic carbonates on the southern flank of the Gakkel Ridge in the zone of its junction with the Laptev Sea continental margin of the Russian Federation. The samples are represented by dense magnesian calcites and aragonites, including rounded and angular fragments of terrigenous material, as well as microphytoplankton of different ages, spores and pollen of terrestrial and aquatic plants. Elemental and organochemical characteristics indicate the predominance of oxidizing or intermediate between oxidizing and reducing conditions of carbonate crystallization, which may be a consequence of their formation near the bottom surface. The isotopic composition of O, C, and Sr allows us to conclude that the diagenetic carbonates of the Gakkel Ridge were deposited mainly in isotopic equilibrium with bottom water at a temperature of about 0°C, which corresponds to measurements from the ship. A wide range of δ13С (–23.5 до –37.3) indicates that methane was an important, but not the only source of carbon in carbonates. The wide variations in the 87Sr/86Sr (0.70906–0.70933), which correlate with the δ13С values, show that the carbonate-forming fluid was not only modern sea water, but also diagenetic solutions coming from the sedimentary cover together with methane and the products of methane and organic matter oxidation. Intense discharge of heterogeneous methane-bearing fluids may be related to the high modern tectonic activity of the studied region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.