Abstract

In stars, the fusion of $^{22}$Ne and $^4$He may produce either $^{25}$Mg, with the emission of a neutron, or $^{26}$Mg and a $\gamma$ ray. At high temperature, the ($\alpha,n$) channel dominates, while at low temperature, it is energetically hampered. The rate of its competitor, the $^{22}$Ne($\alpha$,$\gamma$)$^{26}$Mg reaction, and, hence, the minimum temperature for the ($\alpha,n$) dominance, are controlled by many nuclear resonances. The strengths of these resonances have hitherto been studied only indirectly. The present work aims to directly measure the total strength of the resonance at $E$_{r}$\,=\,$334$\,$keV (corresponding to $E$_{x}$\,=\,$10949$\,$keV in $^{26}$Mg). The data reported here have been obtained using high intensity $^4$He$^+$ beam from the INFN LUNA 400 kV underground accelerator, a windowless, recirculating, 99.9% isotopically enriched $^{22}$Ne gas target, and a 4$\pi$ bismuth germanate summing $\gamma$-ray detector. The ultra-low background rate of less than 0.5 counts/day was determined using 67 days of no-beam data and 7 days of $^4$He$^+$ beam on an inert argon target. The new high-sensitivity setup allowed to determine the first direct upper limit of 4.0$\,\times\,$10$^{-11}$ eV (at 90% confidence level) for the resonance strength. Finally, the sensitivity of this setup paves the way to study further $^{22}$Ne($\alpha$,$\gamma$)$^{26}$Mg resonances at higher energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.