Abstract

BackgroundAedes borne viral diseases, notably dengue, are increasingly reported in Cameroon with Aedes aegypti being a major vector. Data on insecticide resistance of this vector and underlying mechanisms needed for outbreak preparedness remain scarce in Cameroon. Here, we present the nationwide distribution of insecticide resistance in Ae. aegypti and investigate the potential resistance mechanisms involved.MethodsImmature stages of Ae. aegypti were collected between March and July 2017 in 13 locations across Cameroon and reared until G1/G2/G3 generation. Larval, adult bioassays, and piperonyl butoxide (PBO) synergist assays were carried out according to World Health Organization guidelines. F1534C mutation was genotyped using allele specific polymerase chain reaction in field collected adults (Go) and the polymorphism of the sodium channel gene was assessed. The χ2 test was used to compare the mortality rate between bioassays with insecticides only and bioassays after preexposure to PBO synergist.ResultsLarval bioassay revealed that all the three populations tested with temephos were susceptible. Adult bioassays showed a good level of susceptibility toward both pyrethroids tested, 0.25% permethrin and 0.05% deltamethrin, with six out of 10 populations susceptible. However, two populations (Douala and Edéa) were resistant (deltamethrin [73.2–92.5% mortality], permethrin [2.6–76.3% mortality]). The resistance to 4% dichlorodiphenyltrichloroethane was observed in four out of 10 populations tested (16.8–87.1% mortality). Resistance was also reported to carbamates including 0.1% propoxur (60.8–87.1% mortality) and to 0.1% bendiocarb (82.9% mortality). All populations tested were fully susceptible to 1% fenitrothion. A partial recovery of susceptibility was observed in the pyrethroid resistant population of Douala after pre-exposed to PBO suggesting the implication of cytochrome P450 monoxygenases permethrin resistance. Genotyping and sequencing detected the F1534C kdr mutation in the two pyrethroid resistant locations of Edéa and Douala, with allelic frequency of 3.3% and 33.3% respectively. However, the high genetic diversity of the sodium channel gene supports the recent introduction of this mutation in Cameroon.ConclusionsThis study revealed the contrasting resistance profiles to insecticides of Ae. aegypti populations in Cameroon suggesting that, instead of a unique nationwide control approach, a regionally adapted strategy will be needed to control this vector. The localised distribution of the F1534C kdr mutation supports this region-specific control strategy.

Highlights

  • IntroductionNotably dengue, are increasingly reported in Cameroon with Aedes aegypti being a major vector

  • Aedes borne viral diseases, notably dengue, are increasingly reported in Cameroon with Aedes aegypti being a major vector

  • Insecticide resistance profile in adults Bioassays were performed in 10 Ae. aegypti populations collected across Cameroon (Figs. 2 and 3)

Read more

Summary

Introduction

Notably dengue, are increasingly reported in Cameroon with Aedes aegypti being a major vector. The mosquito Aedes aegypti Linneaus, 1762 (Diptera: Culicidae) is the main vector of several arboviral related diseases such as dengue, Zika, chikungunya, and yellow fever in subtropical and tropical world. This domestic mosquito usually bites during daylight, feeding mainly on humans, mating and resting indoor/ outdoor, and breeding in man-made containers in and around human habitations [1]. In Cameroon, where several cases of arboviral related diseases such as dengue [2,3,4,5], chikungunya [6, 7], yellow fever [8] and Zika [9] are increasingly reported, it was demonstrated that Ae. aegypti is present across the country and found as dominant Aedes species in some locations notably in the northern part [10]. Ae. aegypti has been found to be resistant to several classes of insecticides in different regions across the world with significant variation according to the population’s origin and the insecticide classes [17,18,19,20,21,22,23,24]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call