Abstract

Culicidae, the mosquito family, includes more than 3600 species subdivided into the subfamilies Anophelinae and Culicinae. One-third of mosquitoes belong to the Aedini tribe, which is subordinate to the subfamily Culicinae, which comprises common vectors of viral zoonoses. The tribe of Aedini is extremely diverse in morphology and geographical distribution and has high ecological and medical significance. However, knowledge about the systematics of the Aedini tribe is still limited owing to its large population and the similar morphological characteristics of its species. This study provides the first description of the complete mitochondrial (mt) genome sequence of Aedes vexans and Ochlerotatus caspius belonging to the Aedini tribe. The mt genomes of A. vexans and O. caspius are circular molecules that are 15,861bp and 15,954bp in size, with AT contents of 78.54% and 79.36%, respectively. Both the circular mt genomes comprise 37 functional subunits, including 13 protein-coding genes (PCGs), two ribosomal RNA genes, 22 transfer RNA genes (tRNAs), and a control region (also known as the AT-rich region). The most common start codons are ATT/ATG, apart from cox1 (TCG) and nad5 (GTG), while TAA is the termination codon for all PCGs. All tRNAs have a typical clover leaf structure, except tRNA Ser1. Phylogenetic analysis of the concatenated, aligned amino acid sequences of the 13 PCGs showed that A. vexans gathered with Aedes sp. in a sister taxon, and O. caspius gathered with Ochlerotatus sp. in a sister taxon. The findings from the present study support the concept of monophyly of all groups, ratify the current taxonomic classification, and provide vital molecular marker resources for further studies of the taxonomy, population genetics, and systematics of the Aedini tribe.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call