Abstract

Jellyfish blooms are a significant environmental problem that is increasing and may be influenced by anthropocentric practices such as overfishing, pollution, eutrophication, translocation, climate change, and ocean acidification. Many jellyfish have unknown life cycles leading to these blooms. We describe for the first time, the life cycle of scyphozoan jellyfish Rhizostoma luteum from the planula to the young medusa stages, based on laboratory observations. We also provide a preliminary assessment of temperature related to life stages. Comparisons were made with early life history stages of its sibling species Rhizostoma pulmo and Rhizostoma octopus. The life cycle of R. luteum follows the general pattern of metagenesis of scyphozoans. Scyphistoma culture was maintained in filtered seawater at 17–17.5 °C, salinity 37 and light photoperiod (12:12 h light:dark). Scyphistomae were exposed to an experimental temperature descent for two days to test their survival capacity under severe winter conditions. Only one asexual reproduction mode was observed, which is employed for propagation, consisting of podocyst formation with excystment, subsequent development of scyphistoma, strobilation and liberation of viable ephyra. The development of the ephyra to metaephyra was photodocumented, reaching the metaephyra stage in approximately 21–25 days. Young medusae grow rapidly and maturity was reached after a 3-month post-liberation period with a mean bell diameter of 13.27 ± 2.26 cm and wet weight of 181.53 ± 53 g. The life cycle of R. luteum resembles that of its congeners, with the distinction that it has the unique features of being a brooding species (internal fertilisation with subsequent release of planulae) and under the conditions tested, the predominantly strobilation type observed was monodisc, and not polydisc as with the other two species in the genus Rhizostoma. As R. luteum shows sufficient requisite to form blooms if environmental circumstances change, it is important to understand its life cycle.

Highlights

  • In recent decades, blooms of jellyfish in coastal waters appear to be increasing in both frequency and intensity, producing negative ecological, social, and economic impacts

  • The aim of the present paper is to describe for the first time the stages of the life cycle from planulae to young medusae of R. luteum, based on observations made on laboratory cultures and data collected in situ

  • There was no significant preference of settlement on the bottom of the glass flasks (BOTT), glass slide (GS) and sides of glass flasks (LAT) (Kruskal-Wallis test, P = 0.23; n = 20), see Fig 3

Read more

Summary

Introduction

Blooms (sudden outbreaks of one species which comes to dominate the plankton for a period) of jellyfish in coastal waters appear to be increasing in both frequency and intensity, producing negative ecological, social, and economic impacts. The northern Alboran Sea includes the world-renowned Costa del Sol, which counts for 42% of all tourism in Andalusia (southern Spain). Negative media reports may arise if the closing of beaches persists because of the presence of jellyfish, and could drive tourists to seek alternative destinations. Because of its larger size (about 70 cm in diameter [6, 7]), the presence of Rhizostoma luteum near the coasts can have a negative impact on the image of touristic areas, as aforementioned, which are very sensitive to such issues

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call