Abstract
Nano-membrane tri-gate β-gallium oxide (β-Ga2O3) field-effect transistors (FETs) on SiO2/Si substrate fabricated via exfoliation have been demonstrated for the first time. By employing electron beam lithography, the minimum-sized features can be defined with the footprint channel width of 50 nm. For high-quality interface between β-Ga2O3 and gate dielectric, atomic layer-deposited 15 nm thick aluminum oxide (Al2O3) was utilized with tri-methyl-aluminum (TMA) self-cleaning surface treatment. The fabricated devices demonstrate extremely low subthreshold slope (SS) of 61 mV dec−1, high drain current (I DS) ON/OFF ratio of 1.5 × 109, and negligible transfer characteristic hysteresis. We also experimentally demonstrated robustness of these devices with current–voltage (I–V) characteristics measured at temperatures up to 400 °C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.