Abstract

BackgroundEukaryotic pathogens, including Cryptosporidium, Giardia and Enterocytozoon, have been implicated in neonatal diarrhoea, leading to marked morbidity and mortality in the alpaca (Vicugna pacos) and llama (Lama glama) around the world. Australia has the largest population of alpacas outside of South America, but very little is known about these pathogens in alpaca populations in this country. Here, we undertook the first molecular epidemiological survey of Cryptosporidium, Giardia and Enterocytozoon in V. pacos in Australia.MethodsA cross-sectional survey of 81 herds, comprising alpacas of 6 weeks to 26 years of age, were sampled from the six Australian states (Queensland, New South Wales, Victoria, South Australia, Tasmania and Western Australia) across the four seasons. PCR-based sequencing was employed, utilising genetic markers in the small subunit of the nuclear ribosomal RNA (SSU) and 60-kilodalton glycoprotein (gp60) genes for Cryptosporidium, triose-phosphate isomerase (tpi) gene for Giardia duodenalis and the internal transcribed spacer region (ITS) for Enterocytozoon bieneusi.ResultsPCR-based analyses of 81 faecal DNA samples representing 1421 alpaca individuals detected Cryptosporidium, Giardia and/or Enterocytozoon on 15 farms in New South Wales, Victoria and South Australia, equating to 18.5% of all samples/herds tested. Cryptosporidium was detected on three (3.7%) farms, G. duodenalis on six (7.4%) and E. bieneusi on eight (9.9%) in two or all of these three states, but not in Queensland, Tasmania or Western Australia. Molecular analyses of selected faecal DNA samples from individual alpacas for Cryptosporidium, Giardia and/or Enterocytozoon consistently showed that alpacas of ≤ 6 months of age harboured these pathogens.ConclusionsThis first molecular investigation of Cryptosporidium, Giardia and Enterocytozoon in alpaca subpopulations in Australia has identified species and genotypes that are of likely importance as primary pathogens of alpacas, particularly young crias, and some genotypes with zoonotic potential. Although the prevalence established here in the alpaca subpopulations studied is low, the present findings suggest that crias are likely reservoirs of infections to susceptible alpacas and/or humans. Future studies should focus on investigating pre-weaned and post-weaned crias, and on exploring transmission patterns to establish what role particular genotypes play in neonatal or perinatal diarrhoea in alpacas and in zoonotic diseases in different states of Australia.

Highlights

  • Eukaryotic pathogens, including Cryptosporidium, Giardia and Enterocytozoon, have been implicated in neonatal diarrhoea, leading to marked morbidity and mortality in the alpaca (Vicugna pacos) and llama (Lama glama) around the world

  • Cryptosporidium Cryptosporidium was detected in three of all 81 samples tested (Table 2): (i) C. ubiquitum was detected in sample CsNSW26

  • JN812216 [17] representing C. ubiquitum from an alpaca from Peru and 52 other sequences originating from humans, other animals or environmental samples. (ii) C. parvum was detected in the sample from farm CsVIC15

Read more

Summary

Introduction

Eukaryotic pathogens, including Cryptosporidium, Giardia and Enterocytozoon, have been implicated in neonatal diarrhoea, leading to marked morbidity and mortality in the alpaca (Vicugna pacos) and llama (Lama glama) around the world. We undertook the first molecular epidemiological survey of Cryptosporidium, Giardia and Enterocytozoon in V. pacos in Australia. Alpacas (Vicugna pacos), the domesticated form of the South American camelid vicuña (Vicugna vicugna), are prized for their wool and meat [1]. In the 1860s, alpacas and llamas were imported into Australia. In the late 1980s, the modern alpaca industry began in Australia, Canada and the USA, with the importation of alpacas from South America (www.alpaca.asn.au). Maintaining the health of these herds is of utmost importance to the alpaca industry

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.