Abstract
We consider a general insurance risk model with extended flexibility under which claims arrive according to a point process with independent increments, their amounts may have any joint distribution and the premium income is accumulated following any non-decreasing, possibly discontinuous, real valued function. Point processes with independent increments are in general non-stationary, allowing for an arbitrary (possibly discontinuous) claim arrival cumulative intensity function which is appealing for insurance applications. Under these general assumptions, we derive a closed form expression for the joint distribution of the time to ruin and the deficit at ruin, which is remarkable, since as we show, it involves a new interesting class of what we call Appell–Hessenberg type functions. The latter are shown to coincide with the classical Appell polynomials in the Poisson case and to yield a new class of the so called Appell–Hessenberg factorial polynomials in the case of negative binomial claim arrivals. Corollaries of our main result generalize previous ruin formulas e.g. those obtained for the case of stationary Poisson claim arrivals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.