Abstract

BackgroundLysine succinylation is a naturally occurring post-translational modification (PTM) that is ubiquitous in organisms. Lysine succinylation plays important roles in regulating protein structure and function as well as cellular metabolism. Global lysine succinylation at the proteomic level has been identified in a variety of species; however, limited information on lysine succinylation in plant species, especially paper mulberry, is available. Paper mulberry is not only an important plant in traditional Chinese medicine, but it is also a tree species with significant economic value. Paper mulberry is found in the temperate and tropical zones of China. The present study analyzed the effects of lysine succinylation on the growth, development, and physiology of paper mulberry.ResultsA total of 2097 lysine succinylation sites were identified in 935 proteins associated with the citric acid cycle (TCA cycle), glyoxylic acid and dicarboxylic acid metabolism, ribosomes and oxidative phosphorylation; these pathways play a role in carbon fixation in photosynthetic organisms and may be regulated by lysine succinylation. The modified proteins were distributed in multiple subcellular compartments and were involved in a wide variety of biological processes, such as photosynthesis and the Calvin-Benson cycle.ConclusionLysine-succinylated proteins may play key regulatory roles in metabolism, primarily in photosynthesis and oxidative phosphorylation, as well as in many other cellular processes. In addition to the large number of succinylated proteins associated with photosynthesis and oxidative phosphorylation, some proteins associated with the TCA cycle are succinylated. Our study can serve as a reference for further proteomics studies of the downstream effects of succinylation on the physiology and biochemistry of paper mulberry.

Highlights

  • Lysine succinylation is a naturally occurring post-translational modification (PTM) that is ubiquitous in organisms

  • A total 605 lysine succinylation sites in 262 proteins were observed in Brachypodium distachyon L. leaves [29] and 3530 lysine succinylation sites in 2132 proteins were detected in white tea (Camellia sinensis (L.) O

  • A total of 347 lysine succinylation sites in 202 proteins were identified in tomato (Solanum lycopersicum) by high-resolution mass spectrometry [31], 416 lysine succinylation sites in 277 proteins were identified in wheat (T. aestivum L.) [32], and modified proteins were involved in a variety of biological processes

Read more

Summary

Introduction

Lysine succinylation is a naturally occurring post-translational modification (PTM) that is ubiquitous in organisms. Lysine succinylation plays important roles in regulating protein structure and function as well as cellular metabolism. Global lysine succinylation at the proteomic level has been identified in a variety of species; limited information on lysine succinylation in plant species, especially paper mulberry, is available. Lysine succinylation has been observed in proteins in the cytoplasm [12], nucleus and mitochondria [13], revealing that lysine succinylation regulates various important biological processes, including the cell cycle, growth and signal transduction pathways [14]. Recent studies have identified global lysine succinylation sites at the proteomic level in microorganisms, animals, humans and plants [15,16,17,18], demonstrating that succinylation is ubiquitous in diverse organisms.

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call