Abstract

This paper develops an ML-style programming language with first-class contexts i.e. expressions with holes. The crucial operation for contexts is hole-filling. Filling a hole with an expression has the effect of dynamic binding or macro expansion which provides the advanced feature of manipulating open program fragments. Such mechanisms are useful in many systems including distributed/mobile programming and program modules. If we can treat a context as a first-class citizen in a programming language, then we can manipulate open program fragments in a flexible and seamless manner. A possibility of such a programming language was shown by the theory of simply typed context calculus developed by Hashimoto and Ohori. This paper extends the simply typed system of the context calculus to an ML-style polymorphic type system, and gives an operational semantics and a sound and complete type inference algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.