Abstract

Hepsetidae is a small fish family with only the genus Hepsetus, with six described species distributed throughout the South, Central and Western regions of Africa, showing a close relationship with the Alestidae and some Neotropical fish families. However, no cytogenetic information is available for both Hepsetidae and Alestidae species, thus preventing any evolutionary comparative studies at the chromosomal level. In the present study, we are providing new cytogenetic data for Hepsetus odoe, including the standard karyotype, C-banding, repetitive DNAs mapping, comparative genomic hybridization (CGH) and whole chromosome painting (WCP), providing chromosomal patterns and subsidies for comparative cytogenetics with other characiform families. Both males and females H. odoe have 2n = 58 chromosomes (10m + 28sm + 20st/a), with most of the C-band positive heterochromatin localized in the centromeric and subtelomeric regions. Only one pair of chromosomes bears proximal 5S rDNA sites in the short arms, contrasting with the 18S rDNA sequences which are located in the terminal regions of four chromosome pairs. Clear interstitial hybridization signals are evidenced for the U1 and U2 snDNA probes, but in only one and two chromosome pairs, respectively. Microsatellite motifs are widely distributed in the karyotype, with exception for the (CGG)10, (GAA)10 and (GAG)10 probes, which highlight conspicuous interstitial signals on an unique pair of chromosomes. Comparative data from conventional and molecular cytogenetics, including CGH and WCP experiments, indicate that H. odoe and some Erythrinidae species, particularly Erythrinus erythrinus, share similar chromosomal sequences suggesting some relatedness among them, although bearing genomic specificities in view of their divergent evolutionary histories.

Highlights

  • Characiformes comprises 24 families and more than 2100 species (Eschmeyer and Fong, 2017), distributed in many Neotropical and Ethiopian rivers (Nelson et al, 2016)

  • The wide diversification of the characiforms is highlighted by the high karyotype variability found within distinct Neotropical groups, showing the fast evolution of these fishes as expected by the high fragmentation observed in the South American rivers, in contrast with the African ones, which presents lower fragmentation and variability (Ortí and Meyer, 1997; Oliveira et al, 2007)

  • We provide, for the first time, cytogenetic data for Hepsetus odoe, including the standard karyotype, C-banding, repetitive DNAs mapping, comparative genomic hybridization (CGH) and whole chromosome painting (WCP), in order to investigate its chromosomal patterns and provide subsidies for comparative analyzes with some Neotropical fish families

Read more

Summary

Introduction

Characiformes comprises 24 families and more than 2100 species (Eschmeyer and Fong, 2017), distributed in many Neotropical and Ethiopian rivers (Nelson et al, 2016). The wide diversification of the characiforms is highlighted by the high karyotype variability found within distinct Neotropical groups, showing the fast evolution of these fishes as expected by the high fragmentation observed in the South American rivers, in contrast with the African ones, which presents lower fragmentation and variability (Ortí and Meyer, 1997; Oliveira et al, 2007) One example of such scenario concerns the Erythrinidae, a small family widely distributed throughout South America, consisting of the genus Erythrinus, Hoplerythrinus, and Hoplias (Oyakawa, 2003). This result is not fully consensual with some previous phylogenetic proposals (Ortí and Meyer, 1997; Buckup, 1998; Calcagnotto et al, 2005), where some of above families were found to be related

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call