Abstract

SUMMARY This paper presents a new methodology to assist geophysicists in determining the first-break event in a 3-D seismic data set using the well-known technique called dynamic time warping algorithm (DTW), which is usually used to find the optimal alignment between two time-series. We used the optimal path from the cost matrix to identify the first break in the seismogram using a few picks (seeds) made by an interpreter as a reference to perform this task. Furthermore, the data were pre-conditioned by the topographic and linear moveout to improve the method’s accuracy. To demonstrate the technique’s robustness, first, we applied the methodology in a synthetic seismic data. After demonstrating the efficiency of the algorithm, we applied the aforementioned methodology in the Polo-Miranga 3-D seismic cube located in the Recôncavo sedimentary basin, Bahia-Brazil, and in the seismic data acquired from the Blackfoot field in Alberta, Canada. The high-quality results showed consistency in determining the first break in all ranges of offsets, demonstrating an alternative way to accelerate this seismic processing step. Furthermore, we compared the results obtained by the proposed methodology with an algorithm based on comparing the short-time averages with long-time averages. Finally, we performed the static correction calculation to ensure that the time distortion resulting from the terrain and the low-velocity layer was mitigated in shoot gathers and in the stacked section.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call