Abstract

We report the first constraints on the properties of weakly interacting low-mass dark matter (DM) particles using asteroseismology. The additional energy transport mechanism due to accumulated asymmetric DM particles modifies the central temperature and density of low-mass stars and suppresses the convective core expected in 1.1-1.3 Ms stars even for an environmental DM density as low as the expected in the solar neighborhood. An asteroseismic modeling of the stars KIC 8006161, HD 52265 and Alpha Cen B revealed small frequency separations significantly deviated from the observations, leading to the exclusion of a region of the DM parameter space mass versus spin-dependent DM-proton scattering cross section comparable with present experimental constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.