Abstract
Comprehensive statistical characterizations of the dynamic narrowband on-body area and on-body to off-body area channels are presented. These characterizations are based on real-time measurements of the time domain channel response at carrier frequencies near the 900- and 2,400-MHz industrial, scientific, and medical bands and at a carrier frequency near the 402-MHz medical implant communications band. We consider varying amounts of body movement, numerous transmit–receive pair locations on the human body, and various bandwidths. We also consider long periods, i.e., hours of everyday activity (predominantly indoor scenarios), for on-body channel characterization. Various adult human test subjects are used. It is shown, by applying the Akaike information criterion, that the Weibull and Gamma distributions generally fit agglomerates of received signal amplitude data and that in various individual cases the Lognormal distribution provides a good fit. We also characterize fade duration and fade depth with direct matching to second-order temporal statistics. These first- and second-order characterizations have important utility in the design and evaluation of body area communications systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: annals of telecommunications - annales des télécommunications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.