Abstract
The phase-field crystal equation derived from the Swift–Hohenberg energy functional is a sixth order nonlinear equation. We propose numerical methods based on a new convex splitting for the phase-field crystal equation. The first order convex splitting method based on the proposed splitting is unconditionally gradient stable, which means that the discrete energy is non-increasing for any time step. The second order scheme is unconditionally weakly energy stable, which means that the discrete energy is bounded by its initial value for any time step. We prove mass conservation, unique solvability, energy stability, and the order of truncation error for the proposed methods. Numerical experiments are presented to show the accuracy and stability of the proposed splitting methods compared to the existing other splitting methods. Numerical tests indicate that the proposed convex splitting is a good choice for numerical methods of the phase-field crystal equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.