Abstract

Deep convolutional networks have been the most competitive method in remote sensing scene classification. Due to the diversity and complexity of scene content, remote sensing scene classification still remains a challenging task. Recently, the second-order pooling method has attracted more interest because it can learn higher-order information and enhance the nonlinear modeling ability of the networks. However, how to effectively learn second-order features and establish the discriminative feature representation of holistic images is still an open question. In this letter, we propose a first and second-order information fusion network (FSoI-Net) that can learn the first-order and second-order features at the same time, and construct the final feature representation by fusing the two types of features. Specifically, a self-attention-based second-order pooling (SaSoP) method based on covariance matrix is proposed to extract second-order features, and a fusion loss function is developed to jointly train the model and construct the final feature representation for the classification decision. The proposed network has been thoroughly evaluated on three real remote sensing scene datasets and achieved better performance than the counterparts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.