Abstract
The knowledge of how the craquelures happen and their pattern on historical objects, especially paintings, is interested in the field of cultural heritage. Entropy generation and thermal analysis of crack growth are calculated numerically for the canvas painting. The painting is modeled as a three-layer composite with isotropic material properties. An in-house code is developed to model the plane strain elasto-static structural mechanics with hybrid-Trefftz finite element formulation. The results are benchmarked with numerical and analytical solutions. Entropy generation and temperature fields are simulated throughout stacking in mode I of a delamination process. The parameter study shows that the parameter of entropy has a great influence on the process of expectation of break proliferation in fast and low areas. It is likewise demonstrated that the use of the corruption entropy age hypothesis gives a technique for assessing the steady in the law of crack growth regarding the rate of entropy production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.