7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1051/e3sconf/20161206003
Copy DOIJournal: E3S Web of Conferences | Publication Date: Jan 1, 2016 |
Citations: 6 | License type: cc-by |
In the last few years, the performance of the cryogenic gravity instruments has been further improved by the development of a new generation of superconducting gravimeter (SG): the so-called iOSG which is a superconducting gravimeter designed for observatory purpose with a heavier sphere than previous SGs. The first iOSG (iOSG-024) has been installed in July 2015 at the LSSB low background noise underground research laboratory in Rustrel (France), funded by the EQUIPEX MIGA (Matter wave-laser based Interferometer Gravitation Antenna) project and by the European FEDER 2006-2013 PFM LSBB – Developpement des qualites environnementales du LSBB . This instrument is operational since September 2015. We present the first tidal analyses of the 7-month time-varying gravity records of this newly installed instrument as well as the calibration results performed by parallel FG5 absolute gravity measurements. We also show the performances of iOSG-024 in terms of noise levels in the seismic (in the millihertz frequency range) band using a standardized procedure based on the computation of the residual power spectral densities over a quiet time period. The obtained noise levels are compared with other SG sites and with seismological reference noise models. The combination of the instrumental performance of the iOSG with the LSBB site properties makes this gravimetric station one of the quietest in the world, comparable to the lower sensor of the OSG-56 at BFO, at seismic frequencies.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.