Abstract

Despite dynamic inputs, neuronal circuits maintain relatively stable firing rates over long periods. This maintenance of firing rate, or firing rate homeostasis, is likely mediated by homeostatic mechanisms such as synaptic scaling and regulation of intrinsic excitability. Because some of these homeostatic mechanisms depend on transcription of activity-regulated genes, including Arc and Homer1a, we hypothesized that activity-regulated transcription would be required for firing rate homeostasis. Surprisingly, however, we found that cultured mouse cortical neurons from both sexes grown on multi-electrode arrays homeostatically adapt their firing rates to persistent pharmacological stimulation even when activity-regulated transcription is disrupted. Specifically, we observed firing rate homeostasis in Arc knock-out neurons, as well as knock-out neurons lacking the activity-regulated transcription factors AP1 and SRF. Firing rate homeostasis also occurred normally during acute pharmacological blockade of transcription. Thus, firing rate homeostasis in response to increased neuronal activity can occur in the absence of neuronal-activity-regulated transcription.SIGNIFICANCE STATEMENT Neuronal circuits maintain relatively stable firing rates even in the face of dynamic circuit inputs. Understanding the molecular mechanisms that enable this firing rate homeostasis could potentially provide insight into neuronal diseases that present with an imbalance of excitation and inhibition. It has long been proposed that activity-regulated transcription could underlie firing rate homeostasis because activity-regulated genes turn on when neurons are above their target firing rates and include many genes that could regulate firing rate. Surprisingly, despite this prediction, we found that cortical neurons can undergo firing rate homeostasis in the absence of activity-regulated transcription, indicating that firing rate homeostasis can be controlled by non-transcriptional mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call