Abstract

Because the cardiovascular system and respiration are so intimately coupled, disturbances in respiratory control often lead to disturbances in cardiovascular control. Obstructive Sleep Apnea (OSA), Chronic Obstructive Pulmonary Disease (COPD), and Bronchiectasis (BE) are all associated with a greatly elevated muscle vasoconstrictor drive (muscle sympathetic nerve activity, MSNA). Indeed, the increase in MSNA is comparable to that seen in congestive heart failure (CHF), in which the increase in MSNA compensates for the reduced cardiac output and thereby assists in maintaining blood pressure. However, in OSA – but not COPD or BE – the increase in MSNA can lead to hypertension. Here, the features of the sympathoexcitation in OSA, COPD, and BE are reviewed in terms of the firing properties of post-ganglionic muscle vasoconstrictor neurons. Compared to healthy subjects with low levels of resting MSNA, single-unit recordings revealed that the augmented MSNA seen in OSA, BE, COPD, and CHF were each associated with an increase in firing probability and mean firing rates of individual neurons. However, unlike patients with heart failure, all patients with respiratory disease exhibited an increase in multiple within-burst firing which, it is argued, reflects an increase in central sympathetic drive. Similar patterns to those seen in OSA, COPD, and BE were seen in healthy subjects during an acute increase in muscle vasoconstrictor drive. These observations emphasize the differences by which the sympathetic nervous system grades its output in health and disease, with an increase in firing probability of active neurons and recruitment of additional neurons being the dominant mechanisms.

Highlights

  • The respiratory and cardiovascular systems are tightly coupled in order to maximize oxygen delivery to, and removal of carbon dioxide from, the tissues of the body

  • Compared to healthy subjects with low levels of resting muscle sympathetic nerve activity (MSNA), single-unit recordings revealed that the augmented MSNA seen in Obstructive Sleep Apnea (OSA), BE, Chronic Obstructive Pulmonary Disease (COPD), and congestive heart failure (CHF) were each associated with an increase in firing probability and mean firing rates of individual neurons

  • The purpose of this review is to highlight the different mechanisms by which the increase in MSNA in OSA, COPD, and BE is brought about, comparing these to the sympathoexcitation seen in CHF and during acute increases in MSNA in healthy subjects

Read more

Summary

DISCUSSION

Standard multi-unit recordings have shown that elevated levels of MSNA feature in many diseases. It should be emphasized that a high level of MSNA does not, on its own, mean there is any underlying pathology: many healthy young individuals have high MSNA at rest yet normal blood pressures and no evidence of cardiovascular disease (Macefield and Wallin, 1999) This is one of the advantages of single-unit recordings: because of the quantal nature of unitary recordings, the firing properties of individual neurons can be compared across subjects and diseases. This means that by providing evidence of increases in firing probability, mean firing rate or multiple firing one can see whether the elevated level of MSNA reflects an increase in central sympathetic drive that may be being driven by some underlying pathology.

Mean frequency Hz
Findings
CONCLUSION
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call