Abstract

Due to the natural non-volatility and distinctive plasticity, memristors are considered as ideal devices to mimic biological synapses. In this study, an autapse which is implemented with a locally active memristor, is introduced into Fitzhugh–Nagumo neuron and thus a new neuron model is established. The local stability of the neuron model with and without time delay is analyzed, respectively. Four coexisting firing patterns, including chaotic spiking, periodic spiking, periodic bursting and chaotic bursting, dependent on the memristor initial values, are explored. We find that the neuron has four regular attraction basins and its firing pattern can be regulated by choosing appropriate initial values. The time delay has an important effect on firing activities and the neuron model transits from periodic spiking, to chaotic bursting, and then to chaotic spiking with the increase of the time delay. Furthermore, the influence of the autaptic intensity on firing activities of the neuron is also revealed. In order to verify the complex firing activities, a neuron circuit is constructed and circuit simulations are performed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.