Abstract
<span lang="EN-MY">Distributed generation (DG) can be beneficially allocated in distribution power systems to improve the power system's efficiency. However, specious DG's allocation and sizing may cause more power loss and voltage profile issues for distribution feeders. Therefore, optimization algorithms are vital for future intelligent power distribution network planning. Hence, this study proposes a multi-objective firefly analytical hierarchy algorithm (FAHA) for determining the optimal allocation and sizing of DG. The multi-objective function formulation is improved further by integrating analytical hierarchy process (AHP) with FA to obtain the weight of the coefficient factor (CF). The performance of the proposed approach is verified on the 118-bus radial distribution network with different bus voltage at DG location (VDG) as regulated PV-bus during load flow calculations. The calculated CF and impact of the unregulated voltage at the PV-bus on the objectives function have been analysed. The findings show that the proposed techniques could allocate the DG at the most voltage deviation while minimizing the power loss and improving the radial distribution’s voltage stability index (VSI). The experimental results indicate that the approach is able to improve the overall voltage profile, especially at PQ-buses, minimize the power loss while improving the network's stability index simultaneously.</span>
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Power Electronics and Drive Systems (IJPEDS)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.