Abstract
A solar bifacial photovoltaic (PV) module is designed so that it permits the addition of the back electrode to the prevailing silicon PV on the front side. Hence, it has the ability to harvest energy using its front and back faces. This study presents an optimization model for calculating the extra energy yield (EY) that can be harvested from the backside of a bifacial PV module using the Firefly Algorithm (FA). Mathematical modelling of the various parameters that influence the extra EY of the backside of a bifacial module was carried out using SIMULINK. Moreover, the mathematical model of the EY of the module was also carried out and then optimized using FA. The optimization model was confined to two orientation states namely the vertical south–north and vertical east–west at Ogbomosho (8.1227° N, 4.2436° E), Nigeria, with different values of albedo and mounting heights. The simulation result shows that the vertical east–west oriented modules outperform the vertical south–north oriented modules in terms of the EY generated. The result also showed that the maximum value of the EY is harvested at a mounting height of 1 m above the ground with row spacing of 2.5 m and a tilt angle of 25 degrees. Therefore, an optimal selection of the mounting surface (albedo) and mounting elevation values can harvest an extra EY of 5 to 45 per cent and help minimize the cost of energy generated using bifacial PV modules for electricity generation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.