Abstract

Abstract. In the framework of the EU Copernicus programme, the European Centre for Medium-Range Weather Forecasts (ECMWF) on behalf of the Joint Research Centre (JRC) is forecasting daily fire weather indices using its medium-range ensemble prediction system. The use of weather forecasts in place of local observations can extend early warnings by up to 1–2 weeks, allowing for greater proactive coordination of resource-sharing and mobilization within and across countries. Using 1 year of pre-operational service in 2017 and the Fire Weather Index (FWI), here we assess the capability of the system globally and analyse in detail three major events in Chile, Portugal and California. The analysis shows that the skill provided by the ensemble forecast system extends to more than 10 d when compared to the use of mean climate, making a case for extending the forecast range to the sub-seasonal to seasonal timescale. However, accurate FWI prediction does not translate into accuracy in the forecast of fire activity globally. Indeed, when all fires detected in 2017 are considered, including agricultural- and human-induced burning, high FWI values only occur in 50 % of the cases and are limited to the Boreal regions. Nevertheless for very large events which were driven by weather conditions, FWI forecasts provide advance warning that could be instrumental in setting up management and containment strategies.

Highlights

  • The prediction of fire danger conditions allows fire management agencies to implement fire prevention, detection and pre-suppression action plans before fire damages occur

  • The first assessment looks at the capability of European Centre for Medium-Range Weather Forecasts (ECMWF) fire forecasts to reproduce the same Fire Weather Index (FWI) values as would be estimated from the network of local stations but up to 10 d ahead

  • The ECMWF has been involved in the EFFIS development by providing weather forcing and fire danger calculations using its medium-range weather forecasts

Read more

Summary

Introduction

The prediction of fire danger conditions allows fire management agencies to implement fire prevention, detection and pre-suppression action plans before fire damages occur. In many countries fire danger rating relies on observed weather data, which only allows for daily environmental monitoring of fire conditions (Taylor and Alexander, 2006). Even when this estimation is enhanced with the combined use of satellite data, such as hot spots for early fire detection and land cover and fuel conditions, it normally only provides 4 to 6 h warnings. In recent years institutions such as Natural Resources Canada (NRC) and the US National Oceanic and Atmospheric Administration (NOAA) have implemented regional fire danger forecasting systems based on their operational weather forecasts (Bedia et al, 2018).

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call