Abstract

SummaryThe structural response of welded aluminium in fire is computationally and experimentally analysed. A finite element (FE) model is developed to compute the deformation and failure of gas metal arc welded (GMAW) aluminium plate under combined loading and one‐sided unsteady‐state heating representative of fire. The FE model predicts the deformation of the weld, heat‐affected zone and parent plate based on the combined effects of elastic softening, plastic softening and creep. The effects of residual stresses in the weld and thermal expansion on the deformation response are also analysed. The numerical accuracy of the model is rigorously evaluated using a large amount of deformation and failure stress data obtained from fire structural tests performed with welded AA5083–AA5083, AA5083–AA6061 and AA6061–AA6061 plates. Good agreement is found between results computed with the FE model and experimental testing. The results reveal that GMAW welds do not reduce the structural performance of aluminium in fire unless the maximum temperature remains below the recrystallisation temperature. Copyright © 2014 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.