Abstract

The problem of smoke spread through elevator shafts in high rise buildings is analyzed theoretically and numerically in this paper. While experiments and computational fluid dynamics (CFD) models have been used for such exercises, there is a need for fast reduced-order models for such scenarios. Towards this goal, a transient network model called High-rise fire smoke transport and opacity reduced-order model (Fire-STORM) was developed to investigate heat and mass transfer through the elevator shaft during fires. The model numerically solves the coupled set of differential equations of the fire floor in conjunction with the steady state conservation equations of the elevator shaft. The model is validated in two stages. First, the stack effect in a non-fire scenario is analyzed. Pressure differences through exterior doors and elevator doors are compared with experimental data available in the literature and results of a computational fluid dynamics tool. Then, a first-floor fire scenario is considered for the same high-rise building in four different cases which are combinations of different building tightness and ambient temperatures. The results are compared with CFD simulations. For the four different building envelope and ambient thermal conditions, the soot mass fractions and optical visibilities were calculated and compared to CFD predictions. Overall, Fire-STORM is a simple and fast tool to model the evolution of heat and mass transfer in a high-rise building affected by fire. While Fire-STORM is excellent in predicting transient smoke transport for buildings with loose envelopes, it should be used with caution for buildings with tight envelopes since the errors for these cases are relatively high. Despite this, the relative computational speed difference between Fire-STORM and the CFD model highlights the utility of a reduced-order model for firefighter decision making and building control system design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.