Abstract

Microscale thermal analysis, bench scale cone calorimetric and real scale burning tests were conducted to evaluated fire safety performance of expanded polystyrene (EPS) foam. Simultaneous thermal analysis was used to study the thermal degradation of the foam in nitrogen, air, and oxygen environments at four heating rates. An endothermic effect is observed only in nitrogen environment, while two exothermic effects are observed in oxygen and air environments. In the nitrogen environment, the onset temperature of the endothermic effect and the endothermic peak temperature are much higher than that of the exothermic processes observed in air and oxygen environments. The Flynn–Wall–Ozawa method is utilized to analyze the degradation kinetics of the non-isothermal thermogravimetry. The activation energies calculated for an air environment, in a conversion range α = 20–70 %, are lower than those for an oxygen environment. The temperature range for this conversion range is 275–371 °C. The enthalpies of the first exothermic effect exceed that of the oxygen environment by 10–45 %. Bench scale cone calorimetric tests were carried out at incident heat flux of 25, 35, and 50 kW m−2 with two sets of cone equipment. Heat release rate, ignition time, effective heat of combustion, and critical heat flux required for ignition is obtained. In real scale burning tests, the EPS boards were ignited in sandwich structures. Fire spread speeds were derived from temperature measurement inside sandwich structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call