Abstract
This paper proposes a dynamic evolutionary model to quantify the domino effect of ship engine room fires. Based on the spatial and temporal characteristics of fire accidents, the dynamic probability of the domino effect of multiple accident units is calculated using matrix calculation and Monte Carlo simulation. The uncertainties of shipboard personnel, automatic detection systems, sprinkler systems, and the synergistic effects of multiple escalation vectors from different units are addressed. The dynamic probability of the domino effect of multiple accident units is calculated, and a risk assessment of complex fire scenarios in ship engine rooms is implemented. This study also presents the model feasibility in terms of fire risk assessment in cabins with numerous pieces of equipment. The results indicate that 2 min and 4 min are vital time nodes for the development and spread of fires. The extinguishing work on key equipment in the path of the fire's spread can effectively restrain its further expansion. The results can provide critical references for ship fire prevention, fire suppression, and fire protection design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.