Abstract

Among the many and varied applications of nanotechnology, the dispersion of nanoscopic fillers to form polymer nanocomposites with improved fire behaviour illustrates the potential and diversity of nanoscience. Different polymers decompose in different ways and fire retardants act to inhibit the decomposition or flaming combustion processes. Polymer nanocomposites form barriers between the fuel and air, reducing the rate of burning, but beyond that there is little consistency in their effects. It is shown that the decomposition products of polypropylene are changed by the presence of nanoclay, although there is only a small influence on the mass loss rate. The rheological properties of molten polymer nanocomposites are radically different from those of virgin polymers, and these will profoundly affect the heat transfer through the material, resulting in a shorter time to ignition and lower peak in the heat release rate, typical of polymer nanocomposites. The dispersion of nanofillers within polymers is generally measured in the cold polymer, but since this does not reflect the condition at the time of ignition, it is proposed that temperature ramped rheological measurements are more appropriate indicators of dispersion. The influence of polymer nanocomposite formation on the yields of toxic products from fire is studied using the ISO 19700 steady state tube furnace, and it is found that under early stages of burning more carbon monoxide and organoirritants are formed, but under the more toxic under-ventilated conditions, less toxic products are formed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.