Abstract

Thermal control methods based on phase change materials have a wide range of applications, from thermal management to latent heat storage for renewable energy systems, with intermittent availability. Organic PCMs have some advantages over inorganics; however, their major drawback is flammability. In critical applications, such as buildings, electric vehicles, and aerospace applications, flammability is an issue that must be addressed in order to comply with safety standards. This review paper covers current studies assessing the PCM response to fire or excessive temperature, methods for ensuring flame retardancy, and their impact on the PCMs key characteristics: phase transition temperature range, latent heat, heat transfer rate, and compatibility with other system materials. A special focus is set on the preparation methods and the effectiveness of the flame-retardance achievement method. Some research gaps and further research directions are identified and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.