Abstract

Fire is a major disturbance in Canadian forests. Along with fuel and ignition characteristics, climatic conditions are seen as one of the main drivers of fire regimes. Projected changes in climate are expected to significantly influence fire regimes in Canada. As fire regime greatly shapes large-scale patterns in biodiversity, carbon, and vegetation, as well as forest and fire management strategies, it becomes necessary to define regions where current and future fire regimes are homogeneous. Random Forests (RF) modeling was used to relate fire regime attributes prevailing between 1961 and 1990 in eastern Canada with climatic/fire-weather and environmental variables. Using climatic normals outputs from the Canadian Regional Climate Model (CRCM), we delineated current (1961-1990) and future (2011-2040, 2040-2070, 2071 2100) homogeneous fire regime (HFR) zones. Heterogeneous response of fire regime to climate changes is projected for eastern Canada with some areas (e.g., western Quebec) experiencing very small alterations while others (e.g., southeastern Ontario) are facing great shifts. Overall, models predicted a 2.2- and 2.4-fold increase in the number of fires and the annual area burned respectively mostly as a result of an increase in extreme fire-weather normals and mean drought code. As extreme fire danger would occur later in the fire season on average, the fire season would shift slightly later (5-20 days) in the summer for much of the study area while remaining relatively stable elsewhere. Although fire regime values would change significantly over time, most zone boundaries would remain relatively stable. The information resulting from HFR zonations is clearly of interest for forest and fire management agencies as it reveals zones with peculiar fire regimes that would have been hidden otherwise using predefined administrative or ecological stratifications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.