Abstract

As the construction of high-rise buildings increases to solve residential spaces caused by high density population concentration, the occurrence of fire accidents in high-rise buildings is also increasing. The primary cause of fire damage in high-rise buildings is the spread of fire caused by exterior wall finishes. Therefore, it is essential to develop semi-non-combustible finishes that can be applied to high-rise buildings to prevent the spread of fire due to exterior wall finishes. To address this issue, numerous studies are being conducted to develop flame retardant finishing materials that reduce heat release rate and total heat release. A double flame retardant mixed waste paper with expandable graphite and magnesium hydroxide was manufactured to improve the fire performance of cellulose building finishing materials. Total heat release (THR), CO, and CO2 Generation changes were measured using a cone calorimeter, and thermal diffusion rate was measured through the LFA 1000 experiment. The correlation of total heat release, CO generation, CO2 generation, and mass reduction rate by variation of expandable graphite's mesh size at double flame-retardant waste paper were secured through a cone calorimeter test. The thermal diffusion rate data of the specimen were secured through the LFA 1000 experiment. Through experiments, it has been confirmed that specimens using specific expandable graphite particles can be utilized as fire-resistant finishing materials in construction, ensuring fire resistance performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.